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J. Phys. A :  Gen. Phys., Vol. 5, November 1972. Printed in Great Britain. Q 1972 

An exact analysis of spontaneous emission by a single 
two level atom in the rotating wave approximation 
11. Numerical results 

S SWAIN 
Department of Applied Mathematics and Theoretical Physics, The Queen's University 
of Belfast, Belfast BT7 lNN, UK 

MS received 18 May 1972 

Abstract. The problem considered is that of spontaneous emission by a single, two level 
atom which interacts with N modes of the electromagnetic field in the electric dipole, rotating 
wave approximation. The equations derived in a preceeding paper are solved numerically for 
N = 4,5,10,11,20,21, and 201 to find the eigenvalues and various time dependent properties 
of the system. The connection between our approach and conventional Wigner-Weisskopf 
theory is discussed. 

1. Introduction 

The methods set out in two previous publications (Swain 1972a, 1972b) have been 
shown (Swain 1972c, to be referred to as I) to lead to an exact solution of the problem 
of spontaneous emission by a single two level atom which interacts with N modes of 
the electromagnetic field in the electric dipole, rotating wave approximation. In I we 
gave analytic results for the cases N = 1,2, and 3. In this paper we present and discuss 
the results of numerical solutions of our equations made with the aid of an electronic 
computer for various values of N from 4 to 201. 

The model Hamiltonian we consider is 
N N 

H = c afa,U,+a3Uof (g,a,o+ +g:a:a-) 
I =  1 A =  1 

where U: creates a photon in the mode 1, whose frequency is U,, u3, a+ and a- are spin 
one-half operators, o0 is the energy separation of the two atomic levels, and g, is the 
coupling constant between the atom and field modes. It is given explicitly by the 
relation 

where V is the volume of the system, d the dipole matrix element, and U, is the normal 
mode function of the cavity for the mode A evaluated at the position of the atom. We 
use throughout a system of units in which h = 1. (1) describes a system of N electro- 
magnetic modes interacting with a single two level atom in the electric dipole, rotating 
wave approximation. 

In 0 2 we manipulate the equations derived in I into a form suitable for numerical 
computation, and in 0 3 we use these equations to calculate the energy eigenvalues of 
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the system. We also derive approximate expressions for these eigenvalues. In 0 4 we 
discuss the connection between our work, and that of Davidson and Kozak, and 
Weisskopf and Wigner. This discussion emphasizes the connection between the 
Wigner-Weisskopf approach and the rotating wave approximation. In Q 5 we discuss 
the time dependent behaviour of the atom and the field as the system evolves from an 
initial state with the atom excited and no photons present. 

2. The numerical calculation 

It is convenient for the numerical work to work with dimensionless variables. We first 
of all assume that g, = g, a constant independent of the mode 1. As we have mentioned 
in I, this is an approximation-most commonly g, is taken to be proportional to ( o ~ ) ~ ’ ~ ,  
but as this form leads to difficulties in the infinite mode case (the ultraviolet divergence) 
many other functional dependences on o1 are frequently assumed (including the one 
we have chosen here). We must emphasize that it is not essential for the numerical 
work to make this assumption. The particular advantage of taking g, to be a constant 
for our purposes is that it enables us to write our equations in a form independent of the 
magnitude of lgl. With the particular mode frequency scheme we choose, this enables 
us to give results which depend only on the total number of interacting modes and the 
energy separation between adjacent modes. 

In I we showed that the eigenvalues of (1) appropriate to spontaneous emission were 

E(q) = 3 0 0  + 4 (3) 
where q is determined by equation (20) of I. (We will write the equations of I as, eg 120.) 
We also gave expressions for Po(t), the probability that an atom will be in its excited state 
at time t (I37), and p,(t) ,  the probability that there will be a photon in the mode I at 
time t (135). Both these probabilities are conditional on the atom being in its excited 
state at t = 0 with no photons present. Our principle objective in this paper is to 
calculate q,  P,(t) and p, ( t )  for different values of N (the number of modes). 

If we define the dimensionless variables 

Q = q/kl 

Q 6  = o,/lgI 

no = oo/lgl 
and 

then we can write (I20), (I24), (137) and (135) as 
N 

and 

P,(T) = IBQ(0)l2 exp(-iQz) I Q  
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where RA,o C2,-n0 and 7 lglt is a dimensionless time variable. In (8), (9) and 
(10) Q is understood to be a root of (7). It is evident that these equations do not depend 
explicitly on lgl. 

We must now decide our mode frequency scheme. In a general discussion such as 
this, there seems no reason to deviate from a symmetric disposition of the mode fre- 
quencies about the atomic energy. Accordingly, we consider two schemes in which the 
mode energies are evenly and symmetrically placed about oo : 

Here N is always integral, and we note that now the total number of modes is N + 1. 
In the first case ( N  even) there is always one mode on resonance with the atom, in the 
second case ( N  odd) there never is. In terms of dimensionless variables we have 

RA,o = nA (12) 

A = 6/lgl. (13) 

where 

The condition 

oA = wo+n6 2 0 

must be satisfied for all n. This implies 

for N odd or even. Thus 6 (or A) must be less than the limits specified for our equations 
to be meaningful. 

Using ( 1  1) our eigenvalue equation (7) may be written 

1 Q-T- = 0 

where the sum over n extends from n = - N/2 to + N/2. If we write - Q for Q, it is 
clear that - Q satisfies (15) if Q does. Also, for the case N odd, it can be seen that Q = 0 
is a solution. Thus the roots of (15) are 

kQ1,  kQ2,  k Q 3 , .  . . kQ+N+l for N even 

and 

0, + Q 1 / 2 ,  + Q 3 / 2 , . . .  ~ Q + N  forNodd. 
In either case, the total number of roots is N + 2. Consequently, we may write 

and 

corresponding to the probability of the mode of frequency R, + nA being occupied. 
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Because of the symmetry of Q and our energy level scheme we have the property 
p,( t )  = p-Jz). Equations (15), (16), (17) and (9) provide the basis for our numerical 
work. We note that these equations depend only on N, A and z, and do not involve /gl 
or coo explicitly. 

3. The energy eigenvalues 

We have solved the eigenvalue problem (15) for the Q numerically for various values 
of N and A. The results have a different structure according to whether N is odd or 
even (corresponding to the different energy level schemes previously described). We 

Table 1. The eigenvalues Q.(N, A). Only the positive roots are given (since - Q is also an 
eigenvalue) and the roots are arranged in order of increasing magnitude. Also shown (be- 
tween the broken lines) are approximate expressions for the first and last eigenvalues. 

Number of 
modes ( N  + 1) A = 0.1 A 0.5 A = 1.0 A = 2.0 A = 10.0 

5 0,0543 0.2647 0.4901 0.7636 0.9876 
( N  = 4) 0,1643 0,8027 1,4848 2.4374 10.0998 
J5 = 2.236 2.2405 2.3528 2,7487 4,2984 20,0504 

W / 2 )  + 1ANP)A - 2.00 2.50 4.20 20.050 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11 0.05 19 0.2529 0.4698 0.74 18 0.9856 
( N  = 10) 0,1557 0.7594 1.4123 2.3979 10.0993 

0.2598 1,2681 2,3626 4.2471 20.050 1 
0.3646 1.7821 3,3245 6.1758 30~0334 
0.47 1 1 2,3099 4.3038 8.1368 40.0251 

;11 = 3,317 3.3318 3.7403 5.3506 10.1 150 50.0201 
~~ - - - - - - _ - - _ _ - - - _ _ - - - - _ - - -. - -_ _ - - - - .- __ -- -. .- 

A(Nl2) t l/A(N/2) __ 2.90 5.20 10.10 50.02 
- - - _ _ - - - - - - - - - - - - - - - - - - - - .- - - - - __ -. __ - - 

21 0.0509 0,2485 0.4623 0,7336 0.9848 
(N = 20) 0.1528 0.7456 1,3906 2,3852 10,0992 

0.2547 1.2430 2,3285 4.2365 20.0500 
0,3567 1,7408 3.2780 6.1666 30,0334 
0.4588 2.2394 4,2382 8.1278 40.0250 
0.5610 2,7392 5,2073 10.1035 50.0200 
0.6635 3.2408 6.1835 12,0869 60.0167 
0.7664 3.7455 7.1652 14,0750 70.0143 
0.8699 4.2561 8.1517 16.0662 80.0125 
0.9750 4.7816 9.1435 18.0594 90.0111 

J21 = 4.583 4.6230 54334 10.1479 20.0547 100~0100 

A.(N/2) +l/(A(N/2) _ 5.20 10.10 20.05 100*010 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- I-- 0.050 0.2442 0.4540 0.4158 0.4540 :( n'":'] 

0.0174 0.2658 0,4829 0.7402 0,9846 
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discuss in detail the results for N even, and describe only briefly the results for N odd 
at the end of this section, as the treatment is closely analogous. 

In table 1 we present the positive eigenvalues Q,(N,  A) for the cases where N takes 
the values 4, 10 and 20 (the number of modes is N + 1) and A = 0.1,0.5, 1.0,2.0 and 10.0. 
In table 2 we give the positive eigenvalues for these same values of A but now N takes 
the values 3,9 and 19. 

Table 2. The positive eigenvalues Q,(N,  A) for odd values of N .  

Number of 
modes (N + 1) A = 0.1 A = 0.5 A = 1.0 A = 2.0 A = 10.0 

4 0.1117 0.5449 1.0069 1.5899 5.1942 
(N = 3) 2.003 1 2.0804 2.3422 3.3899 15.0672 

10 0.1041 0.5079 0,9436 1.5399 5.1931 
(N = 9) 0.2085 1.0177 1.8928 3.3099 15.0666 

0,3136 1.5325 2.8530 5.2081 25.0401 
0.4205 2.0609 34317 7.1563 35.0287 
3.1754 3.5245 4.8945 9.1288 45,0224 

0.1020 
20 0.2040 

0.3060 
0.4082 

(N = 19) 0.5105 
0.6130 
0.7160 
0.8196 
0.9247 
4.5096 

0.4975 
0.9952 
1.4934 
1.9922 
2.4922 
2.9941 
3.4990 
4.0098 
4.5355 
5.6231 

0.9263 
1.8596 
2.8036 
3.7590 
4.7241 
5.6972 
6.6767 
7,6616 
8.6525 
9.6578 

1.5256 
3.2961 
5.1963 
7.1451 
9.1147 

11.0948 
13.0809 
15.0707 
17.0631 
19.0578 

5.1927 
15.0665 
25.0400 
35.0286 
45.0222 
55.0 182 
65.0154 
75.0134 
85.0118 
95.0106 

We make two points about these results: (i) the values obtained for Q, (apart from 
the final value for each value of N )  are approximately independent of the number of 
modes. For example, in table 1, the first five eigenvalues for the twenty one mode case 
are approximately equal to the first five eigenvalues for the eleven mode case, for every 
value of A listed, and (ii) the eigenvalues (again apart from the final one) are approxi- 
mately evenly spaced, and the value of the spacing is approximately A, 

To understand these points we derive approximate expressions for Q(N,  A). 

3. I .  Approximate formulae for the eigenvalues 

If we make the substitution 

Q = AX 

(15) can be written in the form 
1 

A 2 x - C L  = 0. ,, x + n  

The functions appearing in (19) are shown for the case N = 4 in figure 1 for x 2 0. 
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Figure 1. yl(x) = E::’_, l/(x+u) and y2(x) = A2x for A = 0.5, 1, 2 and 10 plotted for 
positive values of x. Shown as broken curves is n cot EX. 

We have plotted y l ( x )  = C z 2 -  l / ( x  + n) (full curves) and on the same graph y 2 ( x )  = A2x 
fm A = 10, 2, 1 and 0.5. The function y l ( x )  has infinite discontinuities at x = s, where 
s is an integer in the range 0 < s < N / 2 .  The points where y l ( x )  and y 2 ( x )  intersect 
give us the roots of (19). I t  is clear by inspection of figure 1 that the roots have the 
form 

x, = s + 5  (20) 

where 1 > ( > 0 (except possibly when s = N / 2 ) .  Since y l ( x )  is infinite when x is 
integral and zero when x is approximately half-integral we can distinguish two extreme 
cases : 

x, 1: S+T 1 if A’(s + i) << 1 

and 

x, 1 s if A2(s+-$) >> 1. 

This is evident by inspection of figure 1. 
To give more accurate estimates of the roots we make use of the sum 

= n cot Tcx. 
+ m  1 

n = - m  x + n  c -  
n cot nx has infinite discontinuities whenever x is integral and zeros whenever x is 
half-integral. It is shown in figure 1 plotted as broken curves. We expect that 
y l ( x )  N n cot n x  for 1x1 6 N / 2  if N is large, but even for the case plotted in figure 1, 
where N = 4, the disparity between y l ( x )  and n cot nx is not extreme. For this case, 
if A’ >> 1, it is apparent that this approximate form for y l ( x )  will give accurate estimates 
for the roots of (19). 

Let us now consider the extreme cases A’(s+i) >> 1 and A2(s+*) << 1 in more 
detail. 
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3.1.1. A 2 ( s + i )  >> 1. Substituting (20) and (21) into (19) gives 

A2(s+t)  N nCotn(s+t) = n c o t n t  

for 5 small. This is a quadratic equation in t which can be solved to give 

where 

n2 
y = 1 + g .  

For the first root Qo this gives 
Q - -1 /2 .  

0 - Y  

There are two useful limiting cases : 

(i) A’s2 >> 4y ; 

we then find 

1 
SA 

Q, N SA+- 

and thus 

N constant. 
1 

As(s + 1) Qs+ 1- Qs = A--- - - - -  

(We note that (26) implies SA >> 1.) This is in accord with our previous observation 
that the roots Q, seem to be separated by the amount A. In table 1, (28) is seen to give a 
good approximation to Q, when (26) is valid. 

The second case, which is only realizable when A’ << 1, is 

(ii) A‘s2 << 4y. (30) 

This leads to 

Q, = SA 1 - -  +Y-”’ ( J 
where y >> 1 (since A’ << 1). 

constant and equal to A. 
Once again, this implies that the spacing between adjacent roots is approximately 

The final root is given by (28) 

and the condition of validity is 

A2(N/2) >> 1. 
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3.1.2. A2(s+i) << 1. In this case, inspection of figure 1 suggests that we write 

x = s + i + q  (331 
where q << 1, (except for the case s = N/2). Substituting (33) and (21) into (191, we find 

A2(s+++q)  = -7rtannq z -x2q. 
Hence 

A2(s + 4) q = -~ 
x2 + A Z  

(34) 

(351 

As A --+ 0 we have 

Q, --+ A(s + 4). (37) 

Inspection of table 1 shows that (37) is well satisfied for A = 0.1 and 0.5. 
To estimate the final root in this case we assume Az(N/2) << 1. In this event, 

x,%,,~ = N/2+[ where now [ >> 1. If we may further assume that xNi2 >> N/2, we may 
approximate the sum in (19) by 

From (19), this must be equal to A’x, and thus 

Thus the largest root is approximately equal to the square root of the total number of 
field modes. 

By comparing the formulae we have derived with the exact results given in table 1 
it is readily seen that these formulae give accurate estimates of the eigenvalues within 
their ranges of validity. To obtain approximate expressions for the eigenvalues in the 
intermediate range Az(s+*) = 1, one would have to retain higher terms in the ex- 
pansions of the trigonometric functions of equations (22) and (34). To facilitate 
comparison of the exact and approximate expressions we have evaluated in table 1 
the approximate expressions (25) and (36) for the first roots, and (32) and (39) for the 
final roots. 

Apart from (32) and (39), the approximate expressions for the eigenvalues which 
we have derived do not depend upon N (essentially the number of modes). This explains 
the first observation made at the beginning of this section that the values obtained for 
the eigenvalues are (apart from the final eigenvalue) approximately independent of the 
number of modes. Equations (28), (31), (32) and (36) account for the second observation 
(that the spacing of the modes is approximately equal to A). 

Finally we consider how the results are modified for the case when N is an odd 
integer (which corresponds to there being an even number of modes present). The 
method is similar to that for N even : we make use of the relations 

+cc 1 
1 - - -.n tan x x  - 1  . = - , ( x + + ) + n  
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and solve approximately the equation 

A2x+ntannx = 0; (41) 

this enables us to find all the roots of (19) (except the final root in the case A2(N/2) << 1). 
In this situation there is always a root at the origin. We consider in detail two extreme 
cases: A2(s++) >> 1 and A2(s+$) << 1. 

(a) A2(s+& >> 1 
We find 

Q,+ 112 3’ 
xs+1/2 = - - A 

where s is an integer in the range 

( N / 2 - - + )  2 s 2 0 (43) 

and y is defined by (24). In the limit 

( S + ~ ) ~ A ~  >> 4y (44) 

this reduces to 

In table 2 we have listed the positive eigenvalues for N = 3,9 and 19 when A takes the 
values A = 0.1, 0.5, 1.0, 2.0 and 10.0. It can be seen readily from this table that (45) 
gives a good approximation to the eigenvalues when (44) is satisfied. 

In the opposite limit 

(s++)’A2 << 4y (46) 

(42) reduces to 

Qs+l ,2  = A(s+$) 1-- + Y - ” ~ .  ( 4 
(b) A2(s+i) << 1 
In this limit we obtain 

Q s +  112 

A xs+1/2 - 

for s an integer in the range 

(N/2-3)  2 s 2 0. 

(47) 

(49) 
The final root is given by 

Q N i 2  = ( N +  1)1’2 (50) 
which is equal to the square root of the total number of modes, as in the N even case. 
(50) is valid if 

A2(N/2) << 1. (51) 
From table 2 we see that (50) gives a good approximation to the final roots in the cases 
where A = 0-1, N = 3,9 and 19 (which satisfy (51)). 
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4. Connection with the results of Davidson and Kozak, and Weisskopf and Wigner 

Before describing the time dependent properties it is convenient to discuss the con- 
nection between our approach, and that of other workers. Davidson and Kozak (1971) 
have considered the same model as we have, and have given an exact expression for 
Po(t) by calculating the probability amplitude. They used resolvent techniques similar 
to those used by the Brussel’s school in master equation theory. The result they 
obtained was 

= I 4 t ) I 2  (52 )  
where 

dz e- izt 

A@)  = -- 
27ci ‘ P  z - cn 1g,I2/(z- C O ~ , ~ )  

(53)  

(this is their equation (12) converted to our notation). The contour in (53) is parallel 
to the real axis and lies above all the singularities of the denominator. For a finite 
number of discrete modes, the singularities will all be poles, and we may evaluate (53) 
using the calculus of residues to obtain 

where q is a root of the equation 

( 5 5 )  

( 5 5 )  is essentially our equation (7) for the eigenvalues Q written in terms of dimensional 
variables. The limit on the right hand side of (54) may be evaluated using L’Hopital’s 
rule to give 

z-E--- k,I2 = 0. 
A’ z--n,o 

~ - iqt 

which together with (52) is essentially our result (8) and (9), so that our expressions 
are equivalent to those of Davidson and Kozak. These authors used (53) to discuss 
the behaviour of an atom interacting with an infinite number of modes of the electro- 
magnetic field. 

Attention should be drawn to the similarity between (53) and the expression ob- 
tained using conventional Wigner-Weisskopf theory (Louisell 1964, equation (5.80)). 
In the Wigner-Weisskopf approximation one essentially solves the equations of motion 
by considering only those transitions from an initial state with the atom in its excited 
state and no photons present to states in which there is one photon present and the atom 
is in its ground state. The rotating wave approximation retains only those terms in the 
Hamiltonian which connect these states (see the discussion in I) so that it is not sur- 
prising that the Wigner-Weisskopf approximation and the rotating wave approximation 
lead to essentially the same equations. 

However, in the usual Wigner-Weisskopf theory a further approximation is made 
which leads to irreversible behaviour. This involves transforming the sum over modes 
in (53) to an integral, and then evaluating it approximately (Louisell 1964). This leads 
to the exponential decay 

po(t) = e-r t  (57) 
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where 

l- = 2~1g,I2P(~)l,, 

and p(o)  is the number of states per unit energy range for the field at o. 
For the model under consideration here, it is clear that 

1 
P b o )  = 3 

1611 

( 5 8 )  

(59) 

and thus if the Wigner-Weisskopf approach is valid in our case, we should find that 

We will later compare (60) with the numerical solutions of our equations. 

5. The time dependent properties 

We have used an electronic computer to evaluate expressions (9) and (17) for Po@) and 
p,(t)  for various values of N and A. We first consider the case when N = 4, which 
corresponds to 5 field modes being present, one of which is on resonance with the atom. 
Figures 2, 3, 4, 5 and 6 show Po(?) as a function of the dimensionless time T = lglt for 
A = 0.1, 0.5, 1.0, 2.0 and 10.0 respectively. 

Figure 2. Po as a function of T = lglt for the 5 mode case with A = 0.1. 

Figure 2 shows how closely Po(?) approximates to a periodic function for A = 0.1. 
This may be understood by referring to table 1 where it may be seen that the final 
eigenvalue QN,2 is much larger than any of the other eigenvalues, and also much larger 
than iNA. Making use of the latter inequality in (16) for IBQ(0)12 it is readily seen that 

for n # N / 2 .  This situation will always obtain when iNA2 << 1. Hence from (9) 

Po(?) cos2(Qr.7,27) (62)  



1612 S Swain 

Figure 3. Po (full curve), p o  (dotted curve), p i  (broken curve) and pi  (full curve with small 
amplitude) as functions of T for the 5 mode case with A = 0.5. 

Figure 4. Po as  a function of 7 for the 5 mode case with A = 1. 

Figure 5. Po, p o ,  p *  and p + as functions of T for the 5 mode case with A = 2. Also shown is 
P,(T) for the 4 mode case with A = 2 (dotted curve). 
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Figure 6. Po (full curve), p o  (broken curve) and pi (full curve with small amplitude) as func- 
tions of 7 for the 5 mode case with A = 10. Also shown are P0(7) and p +  1,2(7) for the 4 mode 
case with A = 10 (dotted curves). Po is the upper of the two curves. 

and the period of the oscillations is 

(63) 
7c T=---. 

Q N , ~  

(63) predicts the period quite accurately within its range of validity. 
In figure 3 for A = 0.5, Po(z) has the appearance of a modulated sine wave. In this 

case the condition QNi2 >> 3 N A  is not strictly satisfied, and the contribution from 
IBQN,2(0))2 is not so dominant, but the period is still given approximately by (63). Also 
shown in figure 3 are p k 2 ( z ) ,  p*  l(z) and po(r)  for A = 0.5. In figure 4, where A = 1, the 
modulated sine wave behaviour is becoming less apparent, and in figure 5, where 
A = 2, it has disappeared. In these cases, many IBQ(0)12 contribute significantly to Po(7). 
In figure 5 ,  the behaviour of Po(7) consists of a rapid decay, followed by a few oscilla- 
tions of small amplitude, and then a sudden and steep rise to a value near to unity. In 
addition to p k 2 ( 2 ) ,  p *  l(z), pO(s)  we have plotted Po(t) for N = 3 (corresponding to 4 
modes) for the same value of A. This is shown as a dotted curve. It is apparent that 
the behaviour is qualitatively very similar to that for N = 4, A = 2 so that whether there 
is a mode on resonance with the atom or not makes very little difference, at least for 
A 5 2. According to the discussion in I, we would expect to see qualitative differences 
between the cases N even or N odd if A is made sufficiently large. 

The cases for which A = 0.1 and 0.5 correspond to strong coupling between the 
atom and the field modes, those for which A - 1 correspond to intermediate coupling, 
and that case for which A = 10 corresponds to weak coupling. The latter case is shown 
in figure 6, where Po(r) now has the appearance of a distorted cosine curve. This is 
because the atom effectively interacts strongly with only one mode, that with which it 
is on resonance. This interpretation is supported by the appearance of po(z) ,  which is 
approximately that of a sine wave. The amplitude of po(z )  is about 0.98, that of p +  1 ( ~ )  

is about 0.03, and that Of p * 2 ( 7 )  is about 5 x 
We have considered the case N = 3, A = 10, and we have plotted P,(z) and p *  li2(t) 

in figure 6 for comparison with the N = 4, A = 10 case. The readily apparent qualita- 
tive differences between the curves for P,(z) in these two cases are due to the fact that in 

too small to be shown in figure 6. 
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the 9 = 3 case there is no field mode which has an energy close to that of the atom. 
This property also accounts for the small amplitude of the p*  l,2(z) curve as compared 
with the p,(z) curve for N = 4. 

The plots of pk2(2), p * 1 ( ~ )  and p O ( z )  shown in figures 3,5 and 6 demonstrate how the 
energy is distributed between the atom and the modes. Consider first the distribution 
over the field modes. For A 2 1 the energy mostly resides in those modes closest in 
energy to the atomic energy (as one might expect) but for A << 1 (the case of strong 
interaction) the energy tends to be more evenly distributed. In the case A = 10, prac- 
tically all the energy resides in the mode on resonance. As regards the average energy 
stored in the atom, this is seen to be largest (-*) when A is very small and very large, 
and to reach a minimum in the region A - 1. When N is odd and A is large (as in figure 
6 )  it is clear that a considerable fraction of the energy always resides in the atom. 

Let us now consider the 21 mode case ( N  = 20) for the same values of A. We have 
not plotted the case N = 20, A = 0.1 as the behaviour is very similar to that shown in 
figure 2 for N = 4, A = 0.1. The period is now shorter (as given by (63)) and the height 
of the peaks not quite so close to unity, but P,(T) is still well approximated by a periodic 
function. The case N = 20, A = 0.5 shown in figure 7 shows marked differences from 

0 

Figure 7. Po as a function of ‘I for the 21 mode case with A = 0.5. Also shown are p 0 ( r )  and 
P * 1 o ( 4 .  

the case N = 4, A = 0.5. Now the height of most of the peaks is considerably less than 
one, but every so often there is a sudden rise to a value close to unity. It is appropriate 
at this stage to comment on a general property of PO(z). The term P,(T) is equal to unity 
at  7 = 0 and will be equal to unity again at a later time if we can find a value of T which 
simultaneously satisfies 

Qiz = 2nix (65) 

for all the roots Qi where n, is an integer. This may be inferred from (9). However, because 
the Qi are in general irrational numbers no value of T can be found which satisfies (65) 
exactly, although values can be found which satisfy it approximately. P,(T) (and the 
p , ( ~ ) )  belong to the set of almost periodic functions (Bohr 1947). For those values of z 
which do satisfy (65) approximately, P,(z) will be of the order of unity. In this event, 
a Poincare recurrence is said to have occurred. 

These recurrence effects become even more pronounced when we consider the case 
N = 20, A = 1 shown in figure 8. After a sharp decay, P,(T) undergoes oscillations of 
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Figure 8. Po as a function of T for the 21 mode case with A = I. 

c 

very small amplitude (too small to be apparent in figure 8) for a considerable time, until 
suddenly Po(z) increases to a value near to one, and then decays again. In this example 
the first few Poincare recurrences are very well defined. We have plotted P,(z) over a 
larger time scale in this case to show how the single Poincare peaks gradually break up 
into several peaks. As we increase A to A = 2 in figure 9, the Poincark recurrences are 
still evident, but they are no longer as sharp. 

We have calculated Po(z) for the case N = 20, A = 10, but the behaviour is practically 
identical to the case N = 4, A = 10. Because the curves for N = 4 and N = 20 would 
be indistinguishable in an ordinary plot, we have not given a separate graph of the 
N = 20 case. This similar behaviour is striking confirmation of the argument that when 
the field modes are well separated in energy from the atomic energy, they do not interact 
effectively with the atom. 

This property may be deduced from our equations by substituting the approximate 
expressions (25) and (28) for the eigenvalues Q into (16) for IBP(O)1*, and then taking the 

-- 

Figure 9. Po as a function of T for the 21 mode case with A = 2. 
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limit A + x. One finds that 

1 
I&,(0)l2 -+ ___ Q, + 0 1 + A 2 ?  + 

and 

1 1  
l&(0)l2 + + -  Q, = 0. 

Substituting (66) and (67) into (9) and (17) one finds that 

P,(T) - cos% 

and 

[sin% n = O  

p , ( r )  - trigonometric function of z 
n # O  i A2n2 

even for N very large. (66) to (69) apply when N is even. If N is odd, we find similarly 
that the following limits apply as A -+ 'x; : 

1 - cos(rAt) 4 t N 2  

A , . - , v  r i  
P,(t) = l---i c 

and 

where we have set r = n + j  so that r is half-integral. If we retain only the first term 
(r = 3) in the sum in (70) and take r = j in (71) we obtain the relations given in I for the 
two mode case (I 51). (70) and (71) account quite well for the curves given in figure 6 

0.8 

n 

" c 

9" 
0 4  

0 0.2 0.4 0.6 0.8 I .o 
r 

Figure 10. Po for the 201 mode case with A = 0.1,0.5,1 and 2 as functions of 7.  The dots are 
points on the curve exp( -477s). Note that the time scale in this diagram is considerably 
shorter than in the other diagrams. 
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for N = 3, A = 10. It is clear that the sum in (70) exists (and converges rapidly) as the 
limit N -+ cc is taken so that one would expect little difference between the behaviour 
shown in figure 6 for N = 3 and that for larger values of N (and the same value of A). 

Finally we consider the situation when N = 200. In figure 10 we have plotted P,(T) 
for the cases A = 0.1,0.5, 1 and 2. It is observed that the oscillatory behaviour persists 
in the A = 0.1 case even when we are dealing with 201 modes. (The period is still given 
approximately by (63) even though 3NAZ = 1.) In the A = 0.5 case, the behaviour is 
now that of a steady decay to a value near zero, after which P,(t) oscillates with very 
small amplitude (of the order of lo-'). Similar behaviour occurs in the A = 1 and 
A = 2 cases. 

We will now compare these exact results with the approximate expressions (60) given 
by the Wigner-Weisskopf theory, which we might expect to hold for times neither too 
long nor too short for large values of N. It is clear that it does not hold even approximately 
for the A = 0.1 case, but the A = 0.5 case shows better agreement. In figure 10 we have 
plotted various points on the curve exp( - 4nz) for comparison with the exact A = 0.5 
curve, and it may be seen that although the exact and approximate expressions deviate 
appreciably for short times, the agreement for times greater than about T = 0.1 is 
reasonably good. (Ofcourse, (60) cannot account for the Poincart: recurrences and small 
amplitude oscillations which are characteristic of the exact solutions.) 

For the A = 1.0 and A = 2.0 cases the agreement between the approximate and 
exact expressions is even better (typically to within a few per cent over most of the range 
shown in figure 10). We have not plotted (60) for these two cases as the curves would 
not be readily distinguishable from the exact curves. Physical continuity and time 
reversal symmetry require that the exact solution has zero gradient at T = 0 whereas 
(60) predicts a gradient of - r. The function P,(z) in figure 9 for N = 20, A = 2 is also 
well approximated by (60) in the range 0.1 2 T > 3.0. From this discussion it is apparent 
that the Wigner-Weisskopf approach gives a reasonable approximation to our exact 
results for P,(z) if A - 1 or 2 and NA 2 40. 

It is interesting to note that our model (which is a purely dynamical one) shows a 
statistical mechanical type of behaviour for those values of the parameters for which 
the Wigner-Weisskopf theory is valid : after an initial, approximately exponential decay 
the atom settles to an 'equilibrium' state (P,(T) - 0) where it then undergoes oscilla- 
tions of small amplitude (typically of the order of 10-5-10-6 or smaller-too small to 
be shown in figure 10) which corresponds to the fluctuations of a system in statistical 
equilibrium. After a relatively long time interval, P,(T) suddenly undergoes a rapid 
transition to a value close to its initial value (as required by dynamics), and then decays 
again. (For the case N = 200, A = 1 for example, the first appreciable fluctuation occurs 
at  T = 6.5, when P,(z) obtains a value of about 0-56. This is practically the same value 
of T for the first Poincar6 recurrence for the case N = 20, A = 1 (figure 8) but then the 
maximum value of P,(T) was about 0.92.) One may thus regard the atom as interacting 
with a peculiar type of reservoir composed of the electromagnetic field modes. 
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